A short course on Harnack inequality for elliptic PDEs

Lecture given by Alexander Grigor’yan
Note taken by Man-Chun LEE

1 introduction

Let € be a open set in R™. Denote L be a elliptic operator in divergence form. That is

Lu= Z 0;i(a;j05u)
ij
where a;;(x) are measurable function. Furthermore, we assume a;; satisfies
A2 < aij(@)ziz; < Mz? Vo€ Q,VzeR™
We say u is a weak solution of Lu = 0 if fﬂ a;;0;u0;¢ = 0 for any ¢ € C§°(Q). So the

natural class of the solutions is Wllof (Q).

Theorem 1.1.

(De-Giorgi) If u is a solution of Lu = 0, then u € C*.

(J-Nash) Same result for the parabolic case.

(J-Moser) Harnack inequality holds for solution of Lu = 0. In particular, u is Holder

continuous.

Analogously, we can consider L to be in non-divergence form, L = a;;0;0;. Then the natural

case of solution will be W22(Q).

Theorem 1.2. (Krylov-Safonov) u is C* in the non-divergence case (including parabolic

case). Harnack inequality also holds.

In this note, we will focus on the elliptic PDE case. All sup and inf are understood to be

essential supremum and essential infimum if not specified in the content.

2 Holder Inequality for divergence form

In this section, we assume L = 0;(a;;0;) where a;; is measurable, symmetric and uniformly

elliptic by a constant A > 0.

Theorem 2.1. (Mean value inequality) Let w € WY2(Bg), Lu > 0. Then there ezists
C =C(n,\) >0, such that

C
ng Uy < WHUJrHL?(BR)

Proof. Claim: For f € WY2(R"), f > 0. Denote F = {f > 0}. Then

fllLz < Cul FIY ™|V £l e



Let v = f2, by Sobolev inequality,

n—1
(/ vn1> <Cn | VY
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which implies our claim.

For0<r<p<R,0<a<f. Denote

o= [ w-apt = [ w-pp v

P P

Let v = (u — B)+. Choose a cut-off function 5 such that 7 = 1 on B(r) and n = 0 outside

2

B(p). In particular, we may assume |Vrn| < prl

By approximation using smooth function,

we have
/aijajuaw . 772 S 72/awaju8m -un

by putting ¢ = vn?. We also have 9;v0;u = 9;v9;v and v;u = vd;v. Substitute it back to

above inequality to yield

/aijajvaiv . n2 < 72/aij3jvam con < 2)\/v7]|VvHV77|

1/2 1/2
<on([ivopat) ([ 1vape)

By uniform ellipticity, we have

/\Vv|2n2 < 4/\4/v2|V7)|2.
By our choice of 7,

C
/|V(v77)|2 < 2/7]2|Vv|2 +0?|Vn? <204\ + 1)/1}2\V77|2 < (p*T)Q/B V2.

For F' = {u> B} N B,,

a=/ (u—a)iz/ (=0 > (- al|F| = |F|<a(B—a)>.
B F’

P

By our claim, for F = {vn > 0}

1] 22(8,) < lJonllz2 < CLFV™||V ()2 < IF’Il/"p_TIIUHL%B,,)
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That is to say
a1+2/n C

(B—a)t/m(p—r)*
Choose Ry = R(271 +27F), ai, = (2 — 27%), where « is to be determined later. Let

b<

ay = fBRk (u—ay)? and denote ¢ = 142/n. By putting b = ay,a = ap_1,7 = Ry, p = Ri_1,

B8 = ai,a = ag_1 into the above inequality, one can show that

q q
. < Caj_, B Caj_,
P oiR2 T M
By induction on k, we can obtain the followings.
a" - (ktDg+k

p Oktalk=1)+¢(k=2)+...4+¢" " k| O @2
. =aq
0

q
ar < a
k=% M1+q+q?+...g8 1 k-1

2q q
agC (a—-1)?
ME

1
M @D

Noted that ag is bounded from above by | Br uﬁ_ Thus, we may choose
2q 1/2

2C (a-1)2 fBR ua_

Rn

o =

which implies that a — 0 as k — oo. Therefore, an/z (u — Oé)i = 0 which implies the

conclusion.

O

Before proceed to the weak Harnack inequality, we introduce a version of Poincare in-

eqaulity.

Lemma 2.2. (Poincare inequality) For r < 3R, H = {v <0} N B,. For allv € WY1(B,),

we have
CT2|B ‘/
2 r 2
v < ——— Vol
/ + |H| B,

Proof. Let u = vy, by standard Poincare inequality, we have

Cn
[ vz G - ap
B, ™ JB,
where @ = ﬁ fBr u. Thus,

[owup =G [ u—ap = Sl - S g
B, T2 H 7"2 /,12 BT B,
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Summing them up to yield
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Theorem 2.3. (weak Harnack inequality) Let u be a solution of Lu = 0 in Bzgr, u > 0.
For any a > 0 E = {u > a} N Bgr, then Ve > 0, there exists 6 = d(e, \,n) > 0 such that
E|

whenever IlBiRl > ¢, then Supg, U > da.

Proof. By adding a constant, we may assume essinfu > 0. By rescaling, we may also
assume a = 1. Let v = —logwu. v is bounded from above and locally bounded from below
according to the mean value inequality.

Claim: Lv > 0.

For any n € C§°(Bsr), n > 0.

—/aijﬁivﬁjn = /aijiuuajn = /aijf)iuaj(n/u) + /aij()iu ndju-u~t > 0.

Using the special version of Poincare inequality, we can estimate the essential sup norm of

vy by its W12 norm.

B CR?
V(2R) -supvi < C v < C’R2| 2 |Vuy]? < / |Vuy]?.
Br Bar |E| Bar € Bar

On the other hand, choose a cut-off function n such that n = 1 on Bsp, vanishes outside
Bsg and |Vn| = O(1/R). By uniform ellipticity,

. /B IRGACE / as; 05000 -1 = — / ai;000,(7) < 2( / V)12 / IV,

Implying
/ |Vo]? < CR"2.
Bar

Combining everything, supg, v2 < C/e. That is to say infp, u > § = exp(—C/e'/2). O
To show the Holder continuity, we first show a oscillation inequality.

Theorem 2.4. Let Lu = 0 on Bsg, then oscp,u < v-0scggyu, where oscg f =suppg f —
infp f and v =~y(n,\) < 1.

Proof. By scaling and translation, we may assume infpiryu = 0 and supg@p u = 2.
Consider {v > 1} N B(R) and {u < 1} N B(R). At least one of them is of measure greater
than 3|B(R)|.
Suppose {u > 1} N B(R) has measure greater than £|B(R)|. Applying the weak Harnack
with a =1, e = 1/2. We have infgryu > 0 = d(n, A). Thus,

osc u=supu— inf u<2-49§= 2-9 osc u ="y -o0sc U

B(R)U = B(}% BlRy = = 5 B@BR)U =7 B(3R)U-

If {u < 1}N B(R) has measure greater than 1|B(R)|, we then consider v = 2 —u and repeat

the argument above to obtain

OSCB(R)’LL = OSCB(R)’U < v OSCB(gR)U =" OSCB(gR)’LL.



We now are capable of showing the result by De-Gorgi.

Theorem 2.5. Let Lu = 0 on Omega C R™ where u € Wk

loc

2(Q). Then u € C*(Q) for

some a = a(n, \) > 0. Moreover, for any compact set K CC ), we have

l[ullce(ry < Cllullp2(0)
where C = C(n, K,Q, \).
Proof. Let p = dist(K,08) > 0 and p, = 37 ¥p. For all z € K, by Theorem 2.4,

-1

k k—1
OSCH(z,p) U SV O3CB(zp 1)U SV 08Bz, U < 27" |[ull L= (B(z,00))-

By mean value inequality, we further conclude that

0SCB(z,pp)U < Cn’p’yk||u”L2(Q).

Lemma 2.6. For almost all x,y € K with |z —y| < p/2, |u(z) —u(y)| < Clr—y|*|ullr2),
where oo = —logs v > 0.

Proof. For x,y € K, there exists k € N such that 242 < |z —y| < £, Cover K by finite
number of Balls B(z;,pr/2), 2 € K. © € B(zj,px/2) for some j and y € B(z;,p). For
almost all such z,y € B(z;, pi),

lu(z) — u(y)] < CVkHUHL?(Qy

«@
But |z —y| > 37%~1p implies v¥ < 471 (@) . Substitute it back to obtain the desired

result. O

Lemma 2.7. There exists 4 € C*(K) such that |u(z) — u(y)| < Cloz — y|*|[ul|r2(q) and

u = u almost everywhere.

Proof. For x € Q, r > 0, define u,.(z) = IB—l‘fB () U For x € K, we now show that

{u,(x)}r>0 is cauchy. Write u, and ug as follows

up () &) d¢ = / / &) dédn
|B| |B ||BR| () BR(ZE
and
1
on(e) = g [ wan= g [ [ o) den

Thus, for R > r
1
urp(x) — ur(x Si/ / w(&) — u(n)| dédn
) =) < s [ [ ) -t

C||u||L2/ /
In — &% d&dn
|B HBR| (z) J Br(z)

< CRY||ul|pz = 0 as R — 0.



So @ = lim, u,(z) exists for z € K. By lebesgue theorem, & = u almost everywhere. It

remains to show the Holder continuity. Similar to above, we have for all z,y € K and
[z —yl < p/4

1
@) = 0,0 < 15z /B B /B L Tule) o] ded

C||U||L2/ /
< n—&|* d&dn
|B |2 (z) J By (y) ‘

< Ollull> (Jo =yl +2r)*.
Taking r — 0 to conclude this. O

It remains to show that the ||ul|ca (k) is controlled by the L?mnorm on Q. For z € K, by

mean value inequality

a(z)| < sup || < ClullL2B@.p) < Cllullzz-
B(x,p/2)

The Holder norm follows from the above lemma and the fact that @ is bounded in K. [

3 Holder Inequality for non-divergence form

In this section, we denote L = ), ; @ij0;0; where a;; are measurable, symmetric and uni-
;

formly elliptic with ellipticity constant A > 0.

Theorem 3.1. (Krylov-Safonov) If Lu = 0 in  where u € I/Vl P then u € C% for some

oc’

a = a(n,\) > 0. Moreover, for any compact set K in §, we have the following estimate

|ulloa(xy < Cllullw2p )

where C = C(n, \, K,Q) > 0.

We first show a smooth version of the estimate.

Theorem 3.2. Suppose in addition a;; € C*(Q), and u is classical solution. Then we can
find a o = a(n, ) > 0 such that for any compact set K C , 3C = C(n, A\, K,Q) > 0 such
that

l[ullcexy < Cllullcq)-

Remarks: If p > n, it can be easily seen that Theorem (3.2) will imply Theorem (3.1)
by approximation arguement and Sobolev ineqaulity. For p < n case, it is claimed to

be still true by GRIGOR’YAN(??).

Before we proceed to the proof of Theorem 3.2, we show the weak Harnack for the case

of non-divergence operator first.



Theorem 3.3. (weak Harnack inequality) Let u be a solution of Lu = 0 in Bygr, u > 0.
For any a > 0 E = {u > a} N Bg, then V8 > 0, there exists 6 = 6(0,\,n) > 0 such that
|E|

whenever Bal >0, then Supp,, U > da.

Proof. By scaling, we may assume a = 1.

Lemma 3.4. If E contain a ball of radius p > 0, then infp, u > c(%)s where ¢,s are

constants depending on n and X only.

Proof. By translation, we assume the ball contained in F is centred at origin and « is a
solution of Lu = 0 on B(z,4R). Let G = {u < 1} in B(z,4R). We would like to construct
a barrier function w(z) on G in order to estimate u.

Our goal is to construct w(zx) such that Lw > 0 on G, w < 0 on dB(z,4R) and w < 1 on
G. If such function w(z) exists, Lw > Lu = 0 and

w(z) <1=u(x) ondqG.

By maximum principle, w < u on G.

It remains to constuct w. Consider the function |z|~® where s is to be determined. Di-

rect computation yield

1 . - L
L<33|S) = slal 7 (S+2)Zaij# _zi:aii > slz| Q(X_)\n)'

.3

So L(|x|=%) > 0 if we choose s = 2A%n. Choose w(z) = p° [1| - (3]1%)} Clearly, Lw > 0.
€T s S
As p <|z| on G, w(z) <1 on G. On dB(z,4R), |x| > |z| — | — 2| = 4R — R =3R.
1 1
w(x) =p (w—w)ﬁa

On GNB(z R), |z| < |z —z|+ 2] <2R.

w(w) 2 p* {(2113)5 - (311%)5] -c 7]

Therefore, infp(, ryu = infp. gyneu > infp: gngw > C [%}s. O
Lemma 3.5. If il <e=¢€(n,\) where G = {u > 1}, then infpryu > L
|B(4R)| -2

|G| BADY

< e. Find f € C*(B(4R)) such that f =1 on G and
|B(4R)|

supp(f) C G’. Solving the Dirichlet problem Lv = —f on B(4R) and v = 0 on 0B(4R). v

is classical, and v > 0 by maximal principle. Also by Aleksandrov-Pucci estimate,

Proof. Choose G’ such that

sup v < Co R[] (B4aR))-
B(4R)



f is supported in G’ and f < 1,

sup v < CR||f||pr(Bar) < CR\G'|1/” < CyR2eM™.
B(4R)

Define w(z) = ¢; — ca|x|? — e3v(x), where ¢; is to be found.

Lw = —2c¢y Za” 4+ c3f > —2conA+c3 on G.

?

On OB(4R), w < ¢1 — (4R)?ca. Now we choose ¢; = 1, ¢o = (4R)™2 and c3 = nA(8R?)~L.

Then Lw > 0, w|ppur) < 0 and w|g < 1. Maximum principle implies « > w on G. In

particular,
1 nA
infu= inf w> inf w>c; —coR? —supv-ecg=1—— — —Coel/".
Br BrNG BrNG Br 16 8

If € is small enough, then u > % O
Lemma 3.6. If |G N Bg| < €|Bg|, then infg,u > v(n,\). € = €(n,\) specified in the

lemma 3.5.

Proof. By lemma (3.5), we have inf (/s u > 3. Hence {2u > 1} contains a ball of radius
R/4. By lemma 3.4,

R/4\° ¢
inf 2u > —_— = — >
in u_c( ) 0%

R

Define Ey, = {u > v*} N Br. E} is increasing sequence.

Main claim: For all k € N, either |Ex1| > (14 8)|Ex| for 8 = B(n,A) > 0 or Eyy; = Bgr
for some | = I(n, A, ).

If the main claim is true, there exists minimal k¥ = N such that |Ex| > (1 + 8)|Enx—1| >
(1+ B)N|Eo| > (1 + B)NO|Bgr|. And Ex,; = Br. That is to say on Bg,

_—logb
u > ANt = TS = §(n, A, ).

It remains to show the main claim.

By considering v = uy~*, it suffices to show the situation k¥ = 0. When k = 0, Fy = FE,
there exists p € (0,R) such that |[E N Br—,| = |E|/2. Denote F = {u > 1} N Br_,,
G={u<1}.

case 1: Jz € F such that |G N B,(x)| < €[B,(x)|. By lemma 3.5, 2u > 1 on B,/4(x). By

lemma 3.4,

. c(pN*®
> ().
léllf“—2(4R>

On the other hand, |Bg \ Br—,| > |E \ F| = |E|/2 > 0|Bg|/2. This implies p >
R-[1—(1—-6/2)"/"] and hence E; = Bg.



case 2: Vo € F C G°,|GNB,(x)| > €|B,(z)|. By Lebesgue theorem, % — 0 for almost all z €

F. let /' ={x € F: % — 0}. For x € F’, there exists r(z) > 0 such that
|G N By(z)(x)| = € |Byz)(x)| where 7(z) € (0,p). Let K C F’ be a compact set such

that | K| > |F’|/2. By compactness, we can find finitely many z; € K such that
K C Uf\ilBr(mi)(l‘i).

We can apply ball covering arguement. Chooses the ball with the largest radius and
removes all balls intersecting it. Then select the second largest ball and then throw
all balls intersecting it again. Iteriate the process, we obtain a sequence of disjoint
balls By(,,)(2;) in which union of Bs,.(, (z;) cover K. Noted that By.(.,)(;) C Bar
as |z;| +4r(zx;) < R— p+4p < 4R. Apply lemma 3.6, we conclude that

inf  u>7.
Br(aj)(T;5)

That is to say By(g,)(7;) C E1. Therefore,

|Er| = [Eo| = [E1 \ Eo| > Z [(E1\ Eo) N Br(e))(75)| = Z |G N By, ()]
j j
= Z |Br(mj) x] 3 Z |B$r (z; ( )|
i

€

4.3

|F'| =

K| 2 IFl = =1

231 2.3n
So |E1| = (14 B)|Eo|-

This finishes the proof for weak Harnack inequality.

4 Full Harnack inequality

In this section, we consider both cases L = a,;0;0; or L = 0;(a;;0;) with uniform ellipticity
A > 0. First we recall the following weak Harnack inequality which holds on both situation

as illustrated in the past two sections.

Theorem 4.1. (weak Harnack) Suppose Lu =0 in Byg and u > 0, then if we have
{u>1}NBg| =6 |Bg|

for some 6 > 0, then infp, u > 3§ =d6(6,n,\).

Theorem 4.2. (Harnack inequality) If Lu = 0 on Baor with u > 0, then

supu < C’mfu
Br

for some constant C' = C(n,\) >0



Before we proceed to the proof, we need the following lemmas.

Lemma 4.3. Suppose Lu = 0 with u > 0 on Br(x). Lety € Brg(x) such that B,(y) C
Br(z) and r < 2R. If
{u=1}NB.(y)| =0 |B,|

for some 6 > 0, then u(xz) > (%)S 3, for some s = s(n,\) and 6 = 6(6,n, \).

Proof. Observe that By.(y) C Br(z) as |z — y| + 4r < & 4+ 88 = R. Apply weak Harnack

inequality on By, (y), we conclude that

inf w>46; = 51(”,0,)\) > 0.
B (y)

So B, (y) C {u > ¢1} which imply
1
{u 2 01} N Bar(y)| 2 |Br| = 57 - | Bar-

So if Bg,(y) C Bgr(x), we may apply weak harnack again to u/d; on Bg,(y) to conclude that

inf u Z 51 . 5(71,)\) = 616.
BZT(?J)

Noted that € is independent of r. So we may repeat the same argument inductively to
deduce that whenever Byk+2,(y) C Br(x),

inf  u> €.
B(y,2kr)

Let N be the maximal integer so that Bon+2,.(y) C Br(z). Therefore N satisfies
|z —y| + 2V < R < |z —y| + 2V

Using R < |z —y|+ 2V 37, we know that x € B(y, 2V *3r). Thus u(z) > €V §;. On the other
hand, using the first part of inequality, N < log, (R). Combining all of them,

T

R N
w(z) > eV -5y > 6logz(jf)(gl - (E) 5

where s = —log, e > 0. O

Lemma 4.4. Suppose that Lu = 0 on Byg(x). If
{u <0} N Br(z)| = 0 - |Bg|
for some 6 > 0, then supg(, 4gyu > (1 + 0)u(z).

Proof. It u(z) < 0, then the inequality is trivially true. So we may assume wu(z) > 0.

Assuming SUppg(zap) ¥ =1. Let v=1—wu, Lv =0 and v > 0. The assumption implies

[{v=1} N Bg(z)| = 0 |Bg|.

10



Weak Harnack inequality implies that

inf v>4(6,n,N\).
B(z,R)

That is equivalently to say supg(, agyu > (1 + 0)u(z). O
Lemma 4.5. Let Lu =0 on B(x, R), a € R. Then there exists € = e(n, \) > 0 such that if

{u > a} N Br(x)| .
| Br| -

we have supp(, gy u > a+4(u(x) — a).
Remark: If L is of non-divergence form, then it follows directly from Lemma
(3.5).

Proof. By subtracting a constant, we may assume a = 0. Choose y € {u > 0} and B, (y) C
Bpg(x) so that
B
| Brl

2e

where 7 = (2¢)!/"R. The constant € > 0 is to be determined. By assumption,

[{u>0} N Br(y)| _ {u>0} N Br(x)|
| By | - |Br|

1
< —.
-2
which implies

{u <0} N B (y)

>
|Br|

1
5
By Lemma (4.4), suppgy 4,y u > (1 +20) - u(y) provided B(y, 4r) C B(z, R). So we have the

following conclusion.

Claim: If B(y,4r) C B(z,R), then there exists y' € B(y,4r) such that u(y’) >
(1490) - u(y).

Construct a sequence {xy}r>o as follows. Assume e is sufficiently small so that B(z,4r) C
B(z, R). Pick y = & = x in the place of above claim, we obtain a x; € B(xg,4r) so that
w(z1) > (1 +90) - u(xg). If B(x1,4r) C B(x, R), then apply the above claim again to find
a xg € B(x1,4r) in which u(xe) > (14 ) - u(x1). Repeat the same step inductively, we

constructed a sequence xy so that u(zg41) > (1+9)-u(xg) and |xg41 — x| < 4r. Therefore,
u(zy) > (1+0)*-u(z) and |z — 2| < 4rk.

So xj, exists if 4rk < R. Let N be the maximum integer so that 4r N < R. That is 4Nr < R
but 4(N + 1)r > R. Combine all these,

sup u > u(zy) > (1+6)*u(z) > (1+ 5)471(26)71/"_1 ~u(x).
B(z,R)

The conclusion holds if we choose € is very small depending only on n and 6 = §(n, ). O

11



Instead of proving the full Harnack inequality, we prove a equivalent form first.

Theorem 4.6. If Lu = 0 with v > 0 on B(xz,100R), then there exists C = C(n, A) > 0.

sup u < Cu(z).
B(z,R)
Proof. Assume supp(, pyu = 2. Our objective is to show that u(z) is bounded below by

positive constant.

First we construct a sequence zy,k > 0 in which u(zy) = 2. Since SUPp(zR) U = 2,

there exists 21 € B(z, R) such that u(z;) = 2. Suppose we have constructed z;, € B(x,2R),
consider
re =sup{r € (0,R] : sup u <211
B(x,r)

ri must exists as B(xy,r) C B(x,3R). If r, = R, then we terminate the process. Else, we
know that

sup u = okl

B(zy,Tk)

So there exists 241 € B(zy, %) such that u(zpy1) = 2841, If 4,1 ¢ B(x, 2R), we terminate
the process as well and ignore the final term zjy;. Therefore, we constructed a sequence
{xx} in which x;, € B(z,2R), u(zy) = 2¥ and |zg11 — 21| < i for all k. Because of the
second condition, it can be seen that the sequence can at most finitely many as v is bounded
on the compact set B(z,2R). Now we can estimate u(z). By construction,

sup w < 28 < 2R g9k 9kl — ¢ 1 4fu(xy) — a).
B(x,rr)

By Lemma(4.5), there exists € = ¢(n, A) > 0 such that

Hu > 251} N B(ay, 1)

> €.
|B(zk, 1)

Applying Lemma (4.3) to this situation, replacing R by 100R, putting y = x; and r = 7.

Then we conclude that

Tk )S rok—1 _ (Tk)s k
> 0'2 =(—=) d-2 1
@) = (100R R ()
for some s, depending only on A, n.
On the other hand, we also have r{ + ... + ry > R. Otherwise ry < R. Then there
exists 41 € B(ag,ri) \ B(z,2R). But
R>ri+..+ry> |xN+1 —.’1?1| > |-'17N+1 —.’L‘| —|x—w1| >2R - R =R.

Contradiction occur.

o0
R
Since ri+...+ry > R = Z ————, there exists m € {1, 2, ..., N} such that r,,, >
k=1

R

12



Therefore, by putting & = m in the relation (1).

0-2 - >C=C(n,\) > 0.

uw) = () 6oom 2 et

R

Corollary 4.7. Theorem 4.6 implies theorem 4.1, that is the full Harnack inequality.

Proof. Assume Lu = 0 on B(z,2R) with u > 0. Let r = %, then for all y € B(x, R),

B(y,100r) C B(z,2R). By Theorem (4.6), there exists C' = C(n, A) > 0 such that

sup u < Cu(y)
B(y,r)

for each y € B(z, R). Hence for all p,q € B(x, R) such that |p — ¢q| < r, we have

u(q) < sup u < Cu(p). (2)
B(p,r)

Now whenever p,q € B(x, R), we can find a straight line v : [0, L] — B(z, R) joining from
p to g where L = |p —¢|. So y(t) = +|(L — t)p + tq| for t € [0,L]. Divide [0, L] into

0<r<2r<..<Nr<Linwhich (N +1)r > L and denote p; = y(ir). Using (2), we
have u(p;) < Cu(p;y1) for i =0,1,..., N — 1. Hence

u(p) < CNF o u(g) < CF L u(q) < OO w(q).

As the inequality holds for arbitrary p,q in B(x, R). This finish the proof.

Remark: We can also use covering lemma’s arguement to control the number of balls

covering geodesic. O]
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